

8-812 457-1546

199034 г. Санкт-Петербург, ул. Биржевая линия, 16, оф. 221

ntc-pribor@mail.ru www.ntc-pribor.ru

8-383 383-0111

630132 г. Новосибирск, ул. Челюскинцев, 44/1, 5 этаж

inbox@tehnosystems.ru www.tehnosystems.ru

СОВРЕМЕННИЕ ИЗМЕРИТЕЛЬНЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ РЕАЛЬНОГО ВРЕМЕНИ ДЛЯ МЕТАЛЛУРГИИ

000 «ТехноСистемы»

Юридический адрес: 630102 г. Новосибирск, ул. Восход, 1А, офис 417 Фактический адрес: 630132 г. Новосибирск, ул. Челюскинцев, 44/1, 5 этаж ИНН 5404050493 КПП 540501001 ОГРН 1165476217390 ОКПО 73968850

- Более 15 лет работы на рынке.
- ➤ Более 30 компетентных инженеров сертифицированных по работе с оборудованием Siemens, Yokogawa, ProSoft systems, Enress+Hauser, Emerson Electric, ABB и др.
- Проектирование осуществляется на базе современного САПР Eplan.
- Собственная производственная база, укомплектованная современным специализированным оборудованием в Томске и Новосибирске.
- Собственная торговая марка Sensotest.

➤ Более 100 успешно реализованных проектов в различных областях, в том числе на предприятиях АК «Алроса», ОАО «Русал», ПАО «Газпром нефть», ПАО «Интер РАО ЕЭС», ОАО «Евраз» и др.

АКТУАЛЬНОСТЬ

Одним из актуальных направлений совершенствования технологических процессов в металлургии является внедрение современных АСУТП печей для первичного получения металлов и их дальнейшей обработки. В связи с этим требуются математические модели и алгоритмы, позволяющие в режиме реального времени прогнозировать не измеряемые или редко измеряемые параметры процесса и корректировать поведение объектов в зависимости от изменения подаваемой мощности, сырья, окружающей среды.

ЦЕЛЬ ПРОДУКТА

Целью продукта является повышение эффективности управления, снижения энергопотребления и повышение качества готовой продукции за счет внедрения современных измерительных систем реального времени.

ОБЛАСТИ ПРИМЕНЕНИЯ ПРОДУКТА

Областью применения продукта являются предприятия черной и цветной металлургии.

ПОДРОБНОЕ ОПИСАНИЕ И СТРУКТУРА ПРОДУКТА

Современные измерительные информационные системы реального времени для металлургии:

- система измерения уровня чугуна и позиционирование миксеров для доменных производств;
- система измерения геометрических параметров сляба;
- система измерения «свободного борта»;
- системы оценки теплосодержания стальковша;
- система контроля зон возможного прогара футеровки;
- система автоматического мониторинга подвижного состава доменного цеха на основе RFID и GPS технологий;
- системы технического зрения для автоматической диагностики фурменных зон

СИСТЕМА ИЗМЕРЕНИЯ УРОВНЯ ЧУГУНА И ПОЗИЦИОНИРОВАНИЕ МИКСЕРОВ ДЛЯ ДОМЕННЫХ ПРОИЗВОДСТВ

Система предназначена для оценки уровня и веса чугуна в заливочных ковшах перед их подачей в конвертер, а также для предоставления информации оператору о текущем уровне расплава и весе чугуна в процессе

заливки.

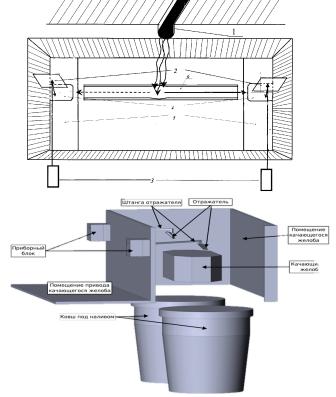
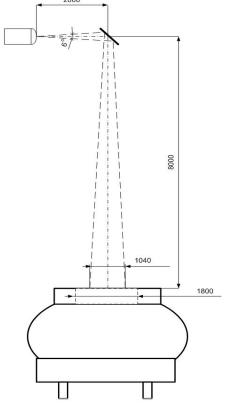
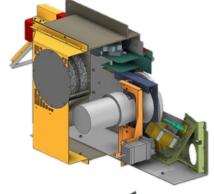
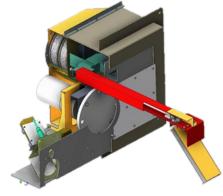
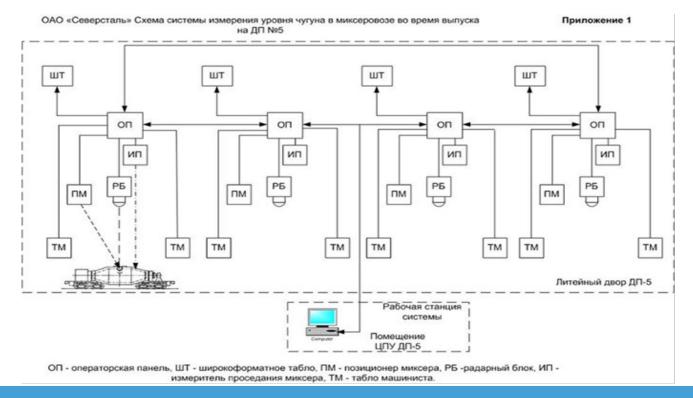





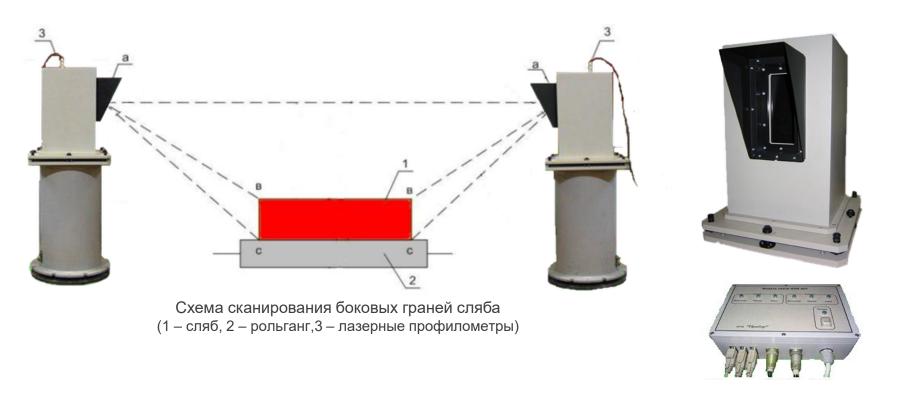
Схема установки системы контроля уровня чугуна в миксере

Измерительная схема системы контроля уровня чугуна в миксере


Радарный блок

СИСТЕМА ИЗМЕРЕНИЯ УРОВНЯ ЧУГУНА И ПОЗИЦИОНИРОВАНИЕ МИКСЕРОВ ДЛЯ ДОМЕННЫХ ПРОИЗВОДСТВ

- предотвращение перелива чугуна (аварийных ситуаций);
- > осуществление непрерывного бесконтактного контроля наполнения;
- существенное упрощение оператору задачи принятия решения о прекращении наполнения данного заливочного ковша;
- оценка (расчетная) веса чугуна по измерениям его уровня.



СИСТЕМА ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ СЛЯБА

Сканирующий профилометрический комплекс (СПК) предназначен для работы в условиях литейного производства, проводит измерения в автоматическом режиме геометрических размеров двигающегося сляба.

Линейный лазерный сканер

СИСТЕМА ИЗМЕРЕНИЯ «СВОБОДНОГО БОРТА»

Система предназначена как для вывода текущей информации о величине свободного борта на устройство отображения, так и для оценки уровня заполнения сталеразливочного ковша при выпуске плавок из конвертера.

Цели создания системы:

- обеспечение мониторинга процесса выпуска в реальном времени;
- оценка и вывод на экран величины текущей высоты свободного борта;
- передача видеоизображения наполнения ковша на пульт оператора.

Интерфейс оператора оптического датчика свободного борта

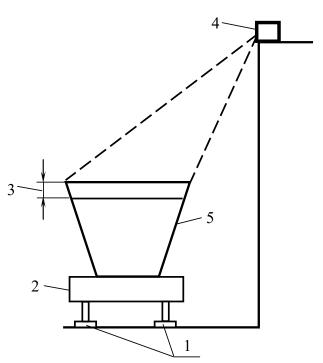
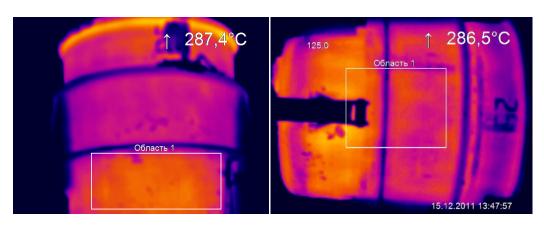
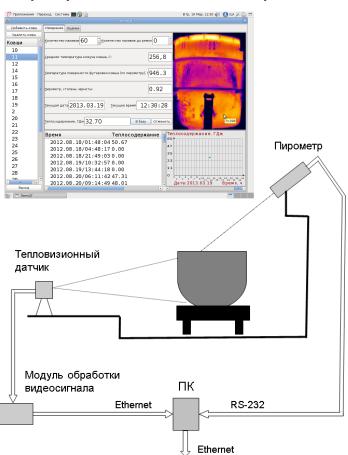


Схема установки системы измерения свободный борт

(1 – рельсы; 2 – сталевоз; 3 – свободный борт; 4 – оптический измерительный модуль; 5 – сталеразливочный ковш)


комплекса.

СИСТЕМЫ ОЦЕНКИ ТЕПЛОСОДЕРЖАНИЯ СТАЛЬКОВША



Система предназначена для определения теплосодержания в автоматическом режиме с использованием программно - аппаратного

- определение параметров теплосодержания сталеразливочного ковша;
- определение параметров теплосодержания сталеразливочного ковша.

Типовая тепловая картина ковшей

Интерфейс пользователя и схема системы оценки теплосодержания стальковша

СИСТЕМА КОНТРОЛЯ ЗОН ВОЗМОЖНОГО ПРОГАРА ФУТЕРОВКИ

Система предназначена для теплового контроля футеровки.

- > предоставление производственному и управляющему персоналу информации о состоянии брони и теплосодержании ковшей и миксеров (для учета остывания чугуна при перевозке);
- прогноз аварийных ситуаций связанных с износом футеровки и их предотвращение.
- обнаружение изменений состояния футеровки позволит прогнозировать разрушения и заранее принимать решения о выводе миксеров и ковшей из эксплуатации для проведения ремонтных работ.
- оптимизация издержек, увеличение межремонтного периода.

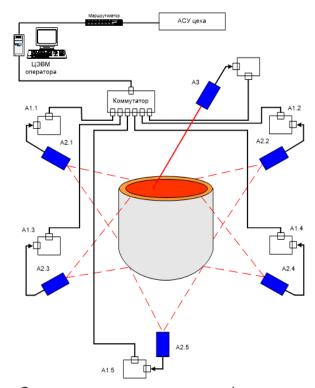
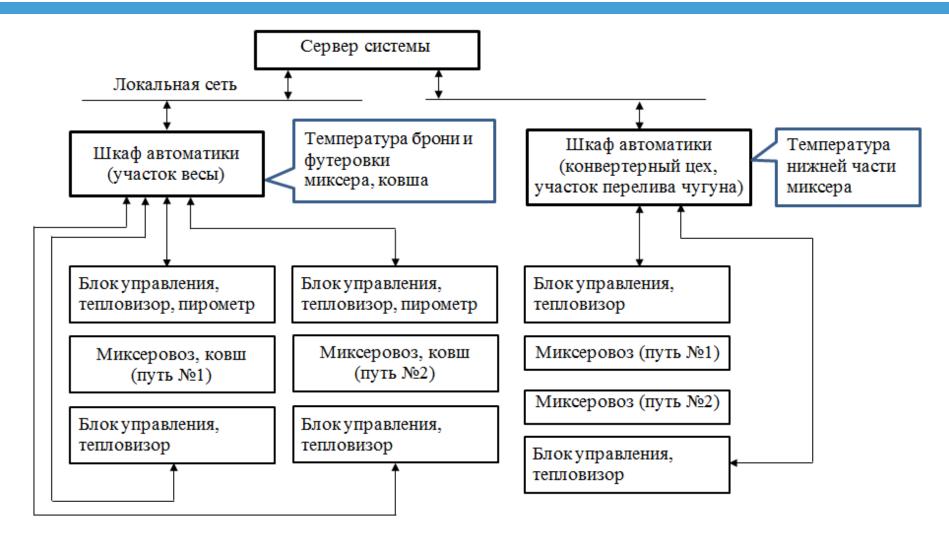
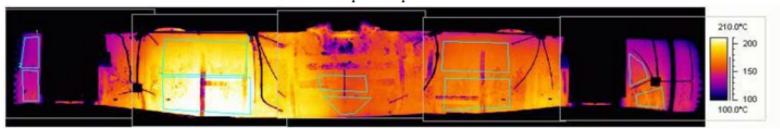
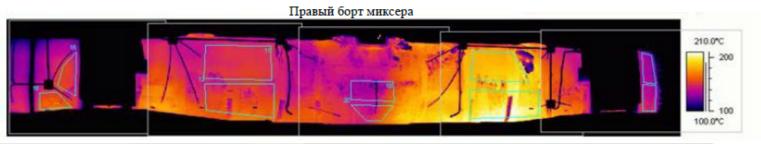



Схема теплового контроля футеровки миксеров и ковшей с помощью стационарных промышленных тепловизоров Optris PI 450 и пирометров в автоматическом режиме

СИСТЕМА КОНТРОЛЯ ЗОН ВОЗМОЖНОГО ПРОГАРА ФУТЕРОВКИ




СИСТЕМА КОНТРОЛЯ ЗОН ВОЗМОЖНОГО ПРОГАРА ФУТЕРОВКИ

Фототермограмма текущего состояния миксера №12 Левый борт миксера

Зоны		Зона №1	Зона №2	Зона №3	Зона №4	Зона №5	Зона №6	Зона №7	Зона №8	Зона №9	Зона №10
Макс. Т °С по зонам		147,4	150,8	218,9	229,4	184,2	173,8	175,9	181,2	173,2	157,3
История	19.01, 02:35	152,2	148,3	205,1	225,2	187,9	178,4	172,4	183,5	171,8	165,3
Make. T °C	18.03, 21:13	147,2	152,5	189,6	210,4	182,4	176,6	171,3	179,4	175,8	164,2
по зонам	18.03, 17:10	150,1	149,3	187,8	195,0	179,5	173,6	173,5	180,4	173,3	159,4
	18.03, 12:45	148,2	155,9	175,6	180,7	182,3	175,3	174,5	182,5	176,8	158,2

Зоны		Зона №1	Зона №2	Зона №3	Зона №4	Зона №5	Зона №6	Зона №7	Зона №8	Зона №9	Зона №10
Макс. Т °С по зонам		147,4	150,8	218,9	229,4	184,2	173,8	175,9	181,2	173,2	157,3
История	19.01, 02:35	152,2	148,3	205,1	225,2	187,9	178,4	172,4	183,5	171,8	165,3
Make. T °C	18.03, 21:13	147,2	152,5	189,6	210,4	182,4	176,6	171,3	179,4	175,8	164,2
по зонам	18.03, 17:10	150,1	149,3	187,8	195,0	179,5	173,6	173,5	180,4	173,3	159,4
	18.03, 12:45	148,2	155,9	175,6	180,7	182,3	175,3	174,5	182,5	176,8	158,2

Время нахождения чугуна в миксере	00:37
Температура выпуска ^о С	1520
Уличная температура °C	-5

СИСТЕМА АВТОМАТИЧЕСКОГО МОНИТОРИНГА ПОДВИЖНОГО СОСТАВА ДОМЕННОГО ЦЕХА НА ОСНОВЕ RFID И GPS ТЕХНОЛОГИЙ

Система предназначена для управления потоком горячего металла в режиме реального времени.

- создание единого информационного поля (мнемосхема) для улучшения процесса принятия решений и координации между производителем и потребителем чугуна;
- минимизация тепловых потерь при помощи формирования автоматического прогноза температуры чугуна и теплоемкости миксеров и ковшей;
- улучшение качества стали;
- автоматический ввод номера металлургической емкости (чугун-ковши, миксеры, шлаковые чаши) в местах проведения технологических операций.

СИСТЕМА АВТОМАТИЧЕСКОГО МОНИТОРИНГА ПОДВИЖНОГО СОСТАВА ДОМЕННОГО ЦЕХА НА OCHOBE RFID И GPS ТЕХНОЛОГИЙ

Функции системы Автоматическое определение местоположения тепловозов, миксеров, ковшей, шлаковых чаш в местах технологических остановок доменного производства с использованием RFID меток

Мониторинг и прогнозирование в режиме онлайн температуры чугуна и визуализация химического состава в таре на всем пути в СП

Тепловой контроль футеровки миксеров и ковшей с помощью стационарных промышленных тепловизоров Optris PI 450

Автоматическое определения текущего положения миксеров, тепловозов на территории комбината с точностью работы GPS.

Система позволяет визуализировать весь процесс транспортировки чугуна и шлака в виде программной мнемосхемы на рабочем компьютере

СИСТЕМА АВТОМАТИЧЕСКОГО МОНИТОРИНГА ПОДВИЖНОГО СОСТАВА ДОМЕННОГО ЦЕХА НА ОСНОВЕ RFID И GPS ТЕХНОЛОГИЙ

Места установок меток на шлаковой чаше

СИСТЕМА ТЕХНИЧЕСКОГО ЗРЕНИЯ ДЛЯ АВТОМАТИЧЕСКОЙ ДИАГНОСТИКИ ФУРМЕННЫХ ЗОН

Система технического зрения предназначена для автоматического контроля работы фурм. Видеосистема присоединяется к смотровому окну воздушной фурмы доменной печи.

- обеспечение мониторинга работы всех фурм в режиме реального времени;
- определение равномерного распределения кокса в печи, наличия шлака на фурмах, наличия препятствия в виде кокса перед фурмами;
- расчет интегрального параметра качества работы доменной печи.

СИСТЕМА ТЕХНИЧЕСКОГО ЗРЕНИЯ ДЛЯ АВТОМАТИЧЕСКОЙ ДИАГНОСТИКИ ФУРМЕННЫХ ЗОН

Состав оборудования:

Наименование	Кол-во
Приборный блок системы технического зрения креплением	36
Шкаф питания диагностики и коммуникации	2
Коммуникационный шкаф	1
Щит распределительный силовой управления (ШРСУ)	1
Сервер обработки информации	4
Жидкокристаллический экран	4
Комплект устройства передачи изображения от серверов обработки информации к жидкокристаллическим экранам	4
Автоматизированное рабочее место оператора (монитор, мышь, клавиатура), KVM-переключатель, Компьютер для APM	1
Стойка крепления жидкокристаллических экранов	1
Жаростойкие провода марки Энерготерм 400 для монтажа в горячей зоне доменной печи	400м
Жаростойкие кабель связи марки Ethernet cat 5е для монтажа в горячей зоне доменной печи	2 км
Оптический кабель ЭКБ-СПЛ-П-08Г 62,5/125 для подключения от шкафов питания и диагностики к аппаратной	1км

ВИДЫ РАБОТ ПО ПРОЕКТУ

Проектно-изыскательские работы – комплекс работ по осуществлению инженерных изысканий, подготовке проектов, разработке экономических и технических обоснований и рабочей документации, составлению сметной документации для реализации проекта.

Поставка оборудования и материалов – комплекс мероприятий по подбору, приобретению и доставки оборудования необходимого для реализации проекта.

Строительно-монтажные работы – это общее название всех работ в строительстве. Монтажными называются работы, выполняемые с использованием готовых деталей. Все виды строительных работ делятся на общестроительные, специальные, транспортные, погрузочно-разгрузочные.

Шеф-монтажные работы – руководство монтажом электрооборудования. Рабочий персонал предоставляется со стороны Заказчика, а технический контроль проводят специалисты нашей компании.

Пусконаладочные работы — комплекс работ, выполняемых в период подготовки и проведения индивидуальных испытаний и комплексного опробования оборудования. Работы по более тонкой и детальной настройке, выполняемые на смонтированном оборудовании, перед вводом в эксплуатацию.

ЗТАПЫ РАБОТ ПО ПРОЕКТУ

Этап 1 – Обследование производства

- Выявление всех аспектов и параметров технологических процессов.
- > Определение методики и технологии измерений.
- Подбор производителей и поставщиков оборудования.
- Формирования требований к системе и подсистемам.

Этап 2 – Проектирование

- Определение показательного сечения, мест установки приборов.
- > Проектирование комплексной системы предприятия и подсистем.
- Формирование финальной спецификации.
- Закупка оборудования, материалов и ЗИП.

Этап 3 – Реализация

- > Строительно-монтажные работы (Шеф монтажные работы).
- > Пусконаладочные работы.
- Поверка оборудования.
- Испытания полного цикла цепочки измерения, обработки и передачи данных.

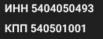
Этап 4 – Ввод в эксплуатацию

- Прохождение экологической, метрологической экспертиз и экспертизы промышленной безопасности проекта.
- > Сертификация комплексной системы с занесением в Госреестр.
- > Обучение пользователей и эксплуатирующего персонала.

Этап 5 – Сервисное обслуживание

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА

- > Выполнение комплексного инжиниринга. Оказание полного спектра услуг по обоснованию, разработке и реализации проекта, включая поставку объектов интеллектуальной собственности, оборудования и сдачу объекта под ключ.
- > Узкопрофильные специалисты высокого класса.
- Собственное укомплектованное производство в двух крупных городах России.
- > Современные технологические, аппаратные и программные решения.
- > Гибкий подход при реализации потребностей Заказчика.
- Большой опыт выполнения проектов различной сложности.
- Различные варианты сотрудничества (ген. подряд, субподряд).
- Наличие всех необходимых лицензий и сертификатов.


8-383 383-0111

630132 г. Новосибирск, ул. Челюскинцев, 44/1, 5 этаж inbox@tehnosystems.ru www.tehnosystems.ru

8-812 457-1546

199034 г. Санкт-Петербург, ул. Биржевая линия, 16, оф. 221 ntc-pribor@mail.ru www.ntc-pribor.ru

